712 research outputs found

    Compliant, Large-Strain, and Self-Sensing Twisted String Actuators with Applications to Soft Robots

    Get PDF
    The twisted string actuator (TSA) is a rotary-to-linear transmission system that has been implemented in robots for high force output and efficiency. The basic components of a TSA are a motor, strings, and a load (to keep the strings in tension). The twisting of the strings shortens their length to generate linear contraction. Due to their high force output, energy efficiency, and compact form factor, TSAs hold the potential to improve the performance of soft robots. Currently, it is challenging to realize high-performance soft robots because many existing soft or compliant actuators exhibit limitations such as fabrication complexity, high power consumption, slow actuation, or low force generation. The applications of TSAs in soft robots have hitherto been limited, mainly for two reasons. Firstly, the conventional strings of TSAs are stiff and strong, but not compliant. Secondly, precise control of TSAs predominantly relies on external position or force sensors. For these reasons, TSA-driven robots are often rigid or bulky.To make TSAs more suitable for actuating soft robots, compliant, large-strain, and self-sensing TSAs are developed and applied to various soft robots in this work. The design was realized by replacing conventional inelastic strings with compliant, thermally-activated, and conductive supercoiled polymer (SCP) strings. Self-sensing was realized by correlating the electrical resistance of the strings with their length. Large strains are realized by heating the strings in addition to twisting them. The quasi-static actuation and self-sensing properties are accurately captured by Preisach hysteresis operators. Next, a data-driven mathematical model was proposed and experimentally validated to capture the transient decay, creep, and hysteretic effects in the electrical resistance. This model was then used to predict the length of the TSA, given its resistance. Furthermore, three TSA-driven soft robots were designed and fabricated: a three-fingered gripper, a soft manipulator, and an anthropomorphic gripper. For the three-fingered gripper, its fingers were compliant and designed to exploit the Fin Ray Effect for improved grasping. The soft manipulator was driven by three TSAs that allowed it to bend with arbitrary magnitude and direction. A physics-based modeling strategy was developed to predict this multi-degree-of-freedom motion. The proposed modeling approaches were experimentally verified to be effective. For example, the proposed model predicted bending angle and bending velocity with mean errors of 1.58 degrees (2.63%) and 0.405 degrees/sec (4.31%), respectively. The anthropomorphic gripper contained 11 TSAs; two TSAs were embedded in each of the four fingers and three TSAs were embedded in the thumb. Furthermore, the anthropomorphic gripper achieved tunable stiffness and a wide range of grasps

    Long-range angular correlations on the near and away side in p–Pb collisions at

    Get PDF

    Production of He-4 and (4) in Pb-Pb collisions at root(NN)-N-S=2.76 TeV at the LHC

    Get PDF
    Results on the production of He-4 and (4) nuclei in Pb-Pb collisions at root(NN)-N-S = 2.76 TeV in the rapidity range vertical bar y vertical bar <1, using the ALICE detector, are presented in this paper. The rapidity densities corresponding to 0-10% central events are found to be dN/dy4(He) = (0.8 +/- 0.4 (stat) +/- 0.3 (syst)) x 10(-6) and dN/dy4 = (1.1 +/- 0.4 (stat) +/- 0.2 (syst)) x 10(-6), respectively. This is in agreement with the statistical thermal model expectation assuming the same chemical freeze-out temperature (T-chem = 156 MeV) as for light hadrons. The measured ratio of (4)/He-4 is 1.4 +/- 0.8 (stat) +/- 0.5 (syst). (C) 2018 Published by Elsevier B.V.Peer reviewe

    Forward-central two-particle correlations in p-Pb collisions at root s(NN)=5.02 TeV

    Get PDF
    Two-particle angular correlations between trigger particles in the forward pseudorapidity range (2.5 2GeV/c. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B. V.Peer reviewe

    Event-shape engineering for inclusive spectra and elliptic flow in Pb-Pb collisions at root(NN)-N-S=2.76 TeV

    Get PDF
    Peer reviewe

    Azimuthal anisotropy of charged jet production in root s(NN)=2.76 TeV Pb-Pb collisions

    Get PDF
    We present measurements of the azimuthal dependence of charged jet production in central and semi-central root s(NN) = 2.76 TeV Pb-Pb collisions with respect to the second harmonic event plane, quantified as nu(ch)(2) (jet). Jet finding is performed employing the anti-k(T) algorithm with a resolution parameter R = 0.2 using charged tracks from the ALICE tracking system. The contribution of the azimuthal anisotropy of the underlying event is taken into account event-by-event. The remaining (statistical) region-to-region fluctuations are removed on an ensemble basis by unfolding the jet spectra for different event plane orientations independently. Significant non-zero nu(ch)(2) (jet) is observed in semi-central collisions (30-50% centrality) for 20 <p(T)(ch) (jet) <90 GeV/c. The azimuthal dependence of the charged jet production is similar to the dependence observed for jets comprising both charged and neutral fragments, and compatible with measurements of the nu(2) of single charged particles at high p(T). Good agreement between the data and predictions from JEWEL, an event generator simulating parton shower evolution in the presence of a dense QCD medium, is found in semi-central collisions. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Peer reviewe

    f0(980) production in inelastic pp collisions at s = 5.02 TeV

    Get PDF
    The measurement of the production of f0(980) in inelastic pp collisions at sqrt(s) = 5.02 TeV is presented. This is the first reported measurement of inclusive f0(980) yield at LHC energies. The production is measured at midrapidity, |y| pi+pi- hadronic decay channel using the ALICE detector. The pT-differential yields are compared to those of pions, protons and ϕ mesons as well as to predictions from the HERWIG 7.2 QCD-inspired Monte Carlo event generator and calculations from a coalescence model that uses the AMPT model as an input. The ratio of the pT-integrated yield of f0(980) relative to pions is compared to measurements in e+e- and pp collisions at lower energies and predictions from statistical hadronisation models and HERWIG 7.2. A mild collision energy dependence of the f0(980) to pion production is observed in pp collisions from SPS to LHC energies. All considered models underpredict the pT-integrated 2f0(980)/(pi+ + pi-) ratio. The prediction from the canonical statistical hadronisation model assuming a zero total strangeness content of f0(980) is consistent with the data within 1.9σ and is the closest to the data. The results provide an essential reference for future measurements of the particle yield and nuclear modification in p–Pb and Pb–Pb collisions, which have been proposed to be instrumental to probe the elusive nature and quark composition of the f0(980) scalar meson

    Measurement of the production of (anti)nuclei in p–Pb collisions at sNN=8.16TeV

    Get PDF
    Measurements of (anti)proton, (anti)deuteron, and (anti)3He production in the rapidity range -1 > y > 0 as a function of the transverse momentum and event multiplicity in p–Pb collisions at a center-of-mass energy per nucleon–nucleon pair sqrt(sNN) = 8.16 TeV are presented. The coalescence parameters B2 and B3, measured as a function of the transverse momentum per nucleon and of the mean charged-particle multiplicity density, confirm a smooth evolution from low to high multiplicity across different collision systems and energies. The ratios between (anti)deuteron and (anti)3He yields and those of (anti)protons are also reported as a function of the mean charged-particle multiplicity density. A comparison with the predictions of the statistical hadronization and coalescence models for different collision systems and center-of-mass energies favors the coalescence description for the deuteron-to-proton yield ratio with respect to the canonical statistical model

    First measurement of Ωc 0 production in pp collisions at s=13 TeV

    Get PDF
    The inclusive production of the charm–strange baryon Omega_c^0 is measured for the first time via its hadronic decay into Omega-pi+ at midrapidity (|y|<0.5) in proton–proton (pp) collisions at the centre-of-mass energy sqrt(s) = 13 TeV with the ALICE detector at the LHC. The transverse momentum (pT) differential cross section multiplied by the branching ratio is presented in the interval 2 < pT < 12 GeV/c . The pT dependence of the Omega_C^0-baryon production relative to the prompt D^0-meson and to the prompt Csi_C^0-baryon production is compared to various models that take different hadronisation mechanisms into consideration. In the measured pT interval, the ratio of the pT-integrated cross sections of Omega_c^0 and prompt Lambda_c^+ baryons multiplied by the Omega- pi+ branching ratio is found to be larger by a factor of about 20 with a significance of about 4σ when compared to e+e- collisions

    Measurement of beauty-strange meson production in Pb–Pb collisions at sNN=5.02TeV via non-prompt Ds + mesons

    Get PDF
    The production yields of non-prompt D_s^+ mesons, namely D_s^+ mesons from beauty-hadron decays, were measured for the first time as a function of the transverse momentum (pT) at midrapidity (|y| phi pi+, with phi -> K+ K-, in the 4 < pT < 36 GeV/c and 2 < pT < 24 GeV/c intervals for the 0–10% and 30–50% centrality classes, respectively. The measured yields of non-prompt D_S^+ mesons are compared to those of prompt D_s^+ and non-prompt D0 mesons by calculating the ratios of the production yields in Pb–Pb collisions and the nuclear modification factor RAA. The ratio between the RAA of non-prompt D_s^+ and prompt D_s^+ mesons, and that between the RAA of non-prompt D_s^+ and non-prompt D0 mesons in central Pb–Pb collisions are found to be on average higher than unity in the 4 < pT < 12 GeV/c interval with a statistical significance of about 1.6 sigma and 1.7 sigma, respectively. The measured RAA ratios are compared with the predictions of theoretical models of heavy-quark transport in a hydrodynamically expanding QGP that incorporate hadronisation via quark recombination
    corecore